
TaichiMD
Interactive, GPU-accelerated Molecular Dynamics using the Taichi programming language

Yangzesheng Sun
Department of Chemistry & Department of Computer Science and Engineering,
University of Minnesota

Background

Computer simulations of microscopic systems is one of the key approaches to
scientific discovery in physics, chemistry, biology, and materials science.

Molecular dynamics (MD) simulations
are employed to design ACE2
inhibitors which prevents SARS-CoV-2
(COVID-19 virus) from infecting human
cells.

Y. Han et al, Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2, ACS Nano 2020, 14, 4, 5143–5147

Background

Developing visualization and interactive techniques can improve our
understanding of microscopic structures and processes

J. Zhang et al, Real-Space Identification of Intermolecular Bonding with Atomic Force Microscopy, Science 2013, 342, 611–614

A – Molecular structure illustration
B – Imaging of the molecule generated by simulations
C – Visualization using scanning tunnel microscopy (STM)
D, E, F – Visualization using atomic force microscopy (AFM)

3D structure model of
dichloromethane (CH2Cl2)

Background

The Taichi programming language provides new possibilities into molecular
simulations compared with traditional molecular simulation packages written
in Fortran or C.

Y. Hu et al, DiffTaichi: Differentiable Programming for Physical Simulation, ICLR 2020.

• Algorithms and data structure in molecular simulations are highly relevant to
computer graphics, such as Monte Carlo, time integrators, and N-body
dynamics

• Differentiable or machine-learning-based molecular simulations has become a
hot research topic in computational physics and chemicstry

Taichi is an order of
magnitude faster in physical
simulations compared with
PyTorch and Autograd
(Eulerian smoke simulation
shown as example)

TaichiMD is a real-time interactive molecular simulation package based
on the Taichi programming language. Its features and goals include：
• Visually pleasing and interactive particle simulations accelerated by GPU
• A platform for rapid implementation of new simulation algorithms and

differentiable simulations

Introduction

TaichiMD is capable of performing various
microscopic and macroscopic particle-based
simulations with neighbor grid acceleration for
large systems, including monoatomic molecules,
polyatomic molecules, and particle-in-cell methods.

The figure shows a fluid simulation of 260,000 Lennard-
Jones particles in TaichiMD at semi-interactive frame rates
(~15 FPS). Typical simulations Lennard-Jones systems do
not exceed 10,000 particles on a single computer.

[1] Lennard-Jones potential，Wikipedia, https://en.wikipedia.org/wiki/Lennard-Jones_potential
[2] Q. P. Chen et al, Using the k-d Tree Data Structure to Accelerate Monte Carlo Simulations, J. Chem. Theory Comput. 2017, 13, 4, 1556–1565

TaichiMD extensively uses the objective data-oriented programming (ODOP)
feature of the Taichi programming language.
• Data-oriented: Data relevant to the simulation system in the taichi scope, such as particle

position, velocity, and grid attributes, comprise the core data structure of TaichiMD (the
Simulation class and its subclasses)

• Object-oriented: Components of TaichiMD is highly modular, with the integrator, grid,
forcefield all being Module subclasses. This decouples the computation from data structure
which enables rapid implementation of new algorithms through new subclasses

System

Simulation
[SNodes]

Forcefield
[non-particle

SNodes]

Grid

Integrator

Analyzer
(Property

calculation)

GUI

User

Module

Computation

Data access

Interactive control

System

TaichiMD includes a high-performance implicit surface renderer for particle
systems with global illumination in pure Taichi

• Spherical particles and chemical bonds are directly rendered using particle positions
without triangle meshes

• Physically-based shading with Cook-Torrance BRDF1 model
• Approximate global illumination algorithm based on radiance transfer1 obtaining

noise-free analytical solutions
• Real-time performance Rendered in for large systems of 260,000 particles when

simulation is paused (> 30 fps, NVIDIA RTX 2080 Super)

[1] PBR: Theory，LearnOpenGL.com, https://learnopengl.com/PBR/Theory
[2] Dynamic Ambient Occlusion and Indirect Lighting, GPU Gems 2, Addison-Wesley, 2005.

Evolution of microscopic systems through time or thermodynamic states can be
directly visualized using interactive simulations of TaichiMD. For example, transition
and coexistence between vapor, liquid, and solid phases can be observed in MD
simulations in canonical (NVT) ensemble:

Visualization results

T = 1.5，Vapor phaseT = 0.8，Vapor – liquid coexistenceT = 0.4，Vapor–solid coexsitence

Visualization results

Rendering of TaichiMD systems

Global illumination
ON

Global illumination
OFF

Global illumination
ON

Global illumination
OFF

Moving least squares material point method (MLS-MPM) readily implemented in
TaichiMD:

Code Example

import taichi as ti
from taichimd import Simulation, MDRenderer, DIM
from taichimd.grid import APIC, QuadraticKernel
from taichimd.integrator import ForwardEulerIntegrator as FE
MDRenderer.radius = 0.2

class MPMGrid(APIC):
@ti.func
def affine(self, i):

self.system.F[i] = (ti.Matrix.identity(ti.f32, DIM) \
+ self.system.dt * self.system.C[i]) @ self.system.F[i]
...
...
...
stress = (-self.system.dt * self.vol * 4 \

* self.inv_dx * self.inv_dx) * stress
return stress + self.mass * self.system.C[i]

1. MLS-MPM is based on the
affine particle-in-cell (APIC)
method. The MPMGrid class is
defined to inherit the APIC grid
class. The main difference
between MLS-MPM and APIC
is the calculation of the affine
velocity field for each particle.
Therefore, the affine()
method is overridden for the
MPMGrid class.

(see https://github.com/victoriacity/taichimd/blob/master/mpm48.py for full code)

https://github.com/victoriacity/taichimd/blob/master/mpm48.py

Moving least squares material point method (MLS-MPM) readily implemented in
TaichiMD:

Code Example

ti.init(arch=ti.cuda, device_memory_GB=3)
dt = 2e-4
n_particles, n_grid = 32768, 64
p_vol, p_rho = (0.5 / n_grid)**2, 1
mpmgrid = MPMGrid(QuadraticKernel(), n_grid, mass=p_vol *\

p_rho, gravity=50)
mpmgrid.vol = p_vol
E, nu = 0.1e4, 0.2 # Young's modulus and Poisson's ratio
mpmgrid.mu_0, mpmgrid.lambda_0 = E / (2 * (1 + nu)), \

E * nu / ((1+nu) * (1 - 2 * nu)) # Lame parameters
sim = Simulation(n_particles, integrator=FE(dt, False),\

grid=mpmgrid)
sim.add_attr("F", dims=(DIM, DIM), dtype=ti.f32)
sim.add_attr("Jp", dims=(), dtype=ti.f32)
sim.gui.set_colors([[6/255, 133/255, 135/255],\

[237/255, 85/255, 89/255], [238/255, 238/255, 240/255]])

2. Initialize the program and set
the materials parameters, then
instantiates a Simulation object
as the simulation system using
forward Euler integration and
the MPMGrid. Two additional
attributes F (deformation
gradient) and Jp (plastic
deformation) are added to the
existing attributes for the APIC
method

(see https://github.com/victoriacity/taichimd/blob/master/mpm48.py for full code)

https://github.com/victoriacity/taichimd/blob/master/mpm48.py

Moving least squares material point method (MLS-MPM) readily implemented in
TaichiMD:

Code Example

sim.init_random(center=(0.4, 0.15, 0.7), \
length=0.2, start=0, end=n_particles//3, inittype=0)

sim.init_random(center=(0.4, 0.45, 0.7), \
length=0.2, start=n_particles//3,

end=2*n_particles//3, inittype=1)
sim.init_random(center=(0.5, 0.75, 0.7), \

length=0.2, start=2*n_particles//3, \
end=n_particles, inittype=2)

sim.build()
sim.velocity.fill(0); sim.F.fill(((1,0,0),(0,1,0),(0,0,1)));
sim.C.fill(0); sim.Jp.fill(1)
sim.run(irender=10, pause=True)

3. Invoke the sim.build()
method to initialize the data
structures for the simulation.
Then the attribute values are
initialized and sim.run() is
invoked to start the
simulation. pause=True
indicates that the simulation
will start after pressing the
space button (and performs
just-in-time compilation)

(see https://github.com/victoriacity/taichimd/blob/master/mpm48.py for full code)

https://github.com/victoriacity/taichimd/blob/master/mpm48.py

Future directions

• Machine-learned molecular simulation and intelligent agent simulations with
reinforcement learning

• Acceleration methods for N-body dynamics (Fast multipole method, Ewald
summation) and optimization-based integration

• Improving the realism and aesthetics of particle visualizations

• More interactive methods such as GUI or external potential fields

Acknowledgements
• Yuanming Hu (MIT CSAIL)
• Taichi forum https://forum.taichi.graphics/

https://forum.taichi.graphics/

