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Meta-learning provides a route towards efficiently investigating the joint space of material structures 
and thermodynamic states for materials discovery problems

Meta-learning achieves higher few-shot performance and extrapolation ability compared with
independently modeling each material

High-throughput molecular simulations can serve as real-world regression applications
for meta-learning

Encoder: 
compresses the example adsorption data 
into a fingerprint representation 

Decoder: 
predicts adsorption using 
the fingerprint and the query state point 
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Hydrogen adsorption
(simulation)

Encoder network
z = fe(Dtrain) ŷ = fd(z, x=(p, T))

Decoder network Hydrogen adsorption
(meta-learning)
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Gibbs Ensemble Monte Carlo simulations7 for 211 all-silica zeolites 
(porous SiO2 materials with different topological structures) 

Meta-learning regression usually benchmarked on artificial datasets
Molecular simulations can provide a concrete problem

Hydrogen vehicles combine advantages of 
traditional engines and electric motors1

Molecular simulations generate many small datasets

H2 adsorption for each material modeled independently5

Predicting for a new material cannot use previous information

Difficult with limited data

H2 adsorption for all materials 
given by the same meta-learner

Predicting for a new material 
can benefit from all simulation data

Trained over a distribution of tasks (base datasets)6 
Use a subset of base dataset (one material, multiple states) as example data
No inner loop, can be further improved by adding adaptation steps
Does not use features about the material structure
   Simulation vs. experiment: same material, different data

Adsorptive storage of H2: 3

Much lower pressures (< 10 MPa)
Better flexibility of fuel tank
Requires cryogenic temperatures (77–200 K)

8 Temperatures: 77.0 K – 275.9 K
8 Pressures: 0.10 MPa – 40.34 MPa

64 state points for a material are subsampled
to create training examples for meta-learning
Meta-training: 75% of zeolites

Representations/model parameters
contain physical properties

Better reconstruction:
more accurate property representation

The same subsampling of state points were used for all materials
Variation by different subsampling << variation by material
Meta-learning significantly outperforms physical model & MLP in few-shot prediction

Lowest temperature in training set: 77 K
Meta-learning achieves good agreement with additional simulations performed at < 77 K
Extrapolation is valuable: simulations are more difficult at lower temperatures

×32

State points
simulated

Material structure

Base task for
meta-learning

Give 64 examples,
predict 64 state points
(reconstruction)

Give 8 examples,
predict 64 state points
(few-shot)
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Logistic regression

Sips adsorption isotherm4

(equation of state / EOS)

Physical model 
echoes machine learning

Adsorption depends on 
material structure and thermodynamic state4 

Model architecture

Training
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H2 molecules adsorbed in a nanoporous material

H2 is compressed at 70 MPa 
in production models2
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n(H2)xtest = ( p, T )

Base learning on each material

Meta-learning on all materials
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Reconstructing simulation data

Few-shot learning

Hydrogen storage in vehicles
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nwork = n(H2, p1) - n(H2, p0)
Working capacity:

Each material has a temperature
which attains the largest capacity
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p0 = 0.271 MPa  p1 = 3 MPa  

Working cycle of a hydrogen-powered car8

Zeolite with highest working capacity

Extrapolation

77 77

Interpolation Extrapolation Interpolation


