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Description of Research 
Machine Learning on Molecular Simulations for Nanoporous Materials Discovery   

Note: This statement mainly pertains to my PhD research conducted at University of Minnesota. It gives 

an overview about the problem and its significance, briefly summarizes my previous work and related 

research, and proposes new research directions. 

Chemical storage and separation are critical in solving various energy and environmental problems in 

the real world, and nanoporous materials are believed to be promising candidates for these applications.1 

For example, a material which efficiently adsorbs hydrogen can be made as the fuel tank of a hydrogen-

powered vehicle,2 and a material which separates alcohol from water will greatly benefit the production 

of biofuels.3 

By virtue of large-scale computational screening on high-performance computing (HPC) resources, 

molecular simulations have dramatically accelerated the discovery of nanoporous materials for these 

crucial applications. The screening workflow contains multiple stages of increasingly accurate 

simulations on decreasing pools of candidates and has been employed on discovering nanoporous 

materials for hydrogen storage,4 methane storage,5 hydrocarbon separation,6 and sulfur capture.7 

Typically, a complete screening process towards a target application consists of 104–106 simulation runs 

and consumes 105–107 CPU hours,8 and may generate terabytes of simulation trajectory data. Therefore, 

it is of great interest to utilize machine learning (ML) methods to further improve such workflows. A 

sufficiently-trained ML model performs fast and accurate evaluations, thus facilitating prediction tasks 

otherwise intractable to pure molecular simulation. The following parts of the statement will describe 

the present and future research towards this objective, and are divided into two thrusts, surrogate model 

and data-driven simulation. 

Surrogate model refers to a ML model equivalent to a molecular simulation in its input parameters and 

output physical properties. More generally, the “surrogate model” term originates from optimization 

theory where a more readily computable model is employed to approximate an intractable optimization 

problem.9 For nanoporous materials discovery, the optimization problem is to maximize the application 

metric with respect to the material structure and/or thermodynamic conditions. Since molecular 

simulations are usually treated as black-box models, gradient-based optimization is in most cases 

impossible. However, with a neural network accurately approximating the simulation results, one can 

readily optimize the metric on the neural network and then perform a minimal amount of simulations to 

validate the prediction. Physics-informed inductive biases or learning algorithms are crucial to construct 

surrogate models because physical consistency can greatly improve the model’s generalization and 

transferability to new systems. These inductive biases can be encoded in the network architecture or 

serve as regularization or the entire objective of ML models.10–12 For predicting the adsorption of guest 

molecules in nanoporous materials, domain-specific models (adsorption isotherms) widely used in 

chemistry and engineering have very similar mathematical forms as logistic regression,13 thus neural 

networks with sigmoid outputs naturally contain inductive biases to predict adsorption in nanoporous 

materials. As molecular simulations are based on statistical mechanics, it is also possible to derive a 

learning algorithm which minimizes the KL divergence between the “true” statistical mechanics 

distribution and the approximating distribution parametrized by the neural network. In complex 

adsorption systems where domain-specific models fail to predict the simulation results, a neural network 

trained in such manner was able to accurately approximate the simulations to the same magnitude as 



their precision.14 Besides using physical principles, meta-learning can also be effective in directly 

learning the inductive biases using simulation data from multiple materials at multiple thermodynamic 

states. Through a meta-learning network, the parameters for the surrogate model of each nanoporous 

material were jointly learned among many materials, significantly improving its extrapolation ability in 

the state space. Meta-learning also enables few-shot prediction of a new material based on a limited 

number of simulations and is transferable from simulation data to experimental data.15 

Data-driven simulation refers to a molecular simulation whose algorithms directly and actively involve 

ML models. In contrast to a completely physical simulation in which the simulation algorithm is 

independent to the data generated, a data-driven simulation becomes more accurate or computationally 

efficient with increasing amounts of data available through previous simulations. Performing high-

quality simulations for complex systems and processes is an indispensable part of the vision to “make 

the world computable”.16 Nevertheless, these simulations are especially challenging because of 1) the 

cost and poor scaling of quantum chemistry calculations in large systems involving quantum effects or 

chemical reactions17 and 2) the difficulty in sampling microscopic configurations of complex molecules 

and materials with structural constraints and free energy barriers.18 In the first case, neural network 

atomistic potentials are commonly employed to achieve quantum mechanical accuracy of the potential 

energy surface of the system with few orders of magnitude less computational cost,19 thus data-driven 

simulations with neural network potentials can be performed by training the model on the fly during a 

first principles molecular simulation.20,21 First principles Monte Carlo simulations have been an 

effective approach to understanding reactive adsorption in nanoporous materials.22 Given the structural 

symmetry and spatial confinement of nanoporous materials, it is highly possible that repeated quantum 

chemistry calculations are performed for similar chemical environments, opening up great potentials for 

these simulations to be accelerated by machine learning. In the second case, machine-learned sampling 

methods and generative models for microscopic configurations can be a promising approach to address 

the problem. When the result structure for the molecular simulation is known, such as in protein folding, 

a neural energy function can be learned end-to-end which are free of energy barriers, and the predicted 

protein structure was obtained through a simulation using the learned energy function.23 For other 

complex systems with thermodynamic properties of interest, including nanoporous materials, there is 

no ground truth configuration and the simulation results are obtained from sampling the equilibrium 

distribution of configurations. Generative models based on neural networks are known to be powerful 

in modeling complex distributions such as natural images,24 therefore it is of great interest to leverage 

them for generating microscopic systems and simulation trajectories. One of the groundbreaking works 

in this aspect is the Boltzmann generator.18 The Boltzmann generator is an invertible neural network 

transforming between the microscopic configurational distribution and a Gaussian latent distribution, 

so that new configurations for a system can be efficiently sampled from the latent distribution. In this 

way, data-driven simulations can be directly performed through dynamics or Monte Carlo sampling in 

the latent coordinates. Similar approaches also include using machine learning to find collective 

variables for molecular simulations.25 The data-driven simulation methodology can greatly benefit 

simulations for nanoporous materials where phase changes of the adsorbed molecule exist.26 These 

phase changes are important in studying the adsorption mechanisms of nanoporous materials, while 

enhanced sampling methods and special simulation setups are usually required.  
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